A Practical Solution to the Deterministic Nonhomogeneous LQR Problem

Author:

Hampton R. D.1,Knospe C. R.2,Townsend M. A.2

Affiliation:

1. Department of Engineering (Mechanical), McNeese State University, Lake Charles, LA 70609

2. Department of Mechanical, Aerospace, and Nuclear Engineering, University of Virginia, Charlottesville, VA 22903

Abstract

A linear-quadratic-regulator-based (LQR) controller originates from a homogeneous set of state-space equations, and consists of a matrix of constant feedback gains. If the state equations are made nonhomogeneous by adding a vector of deterministic forcing terms, the standard LQR solution is no longer optimal. The present paper develops a matrix solution to this augmented (nonhomogeneous) LQR problem. The solution form consists of constant-gain feedback of the full-state vector, summed with a matrix preview (Duhamel integral) term. A practical and usable approximation is presented for the optimal preview term, having the form of a constant preview gain matrix. An example shows the improvement obtainable in controller performance with the use of this preview gain matrix, for exponentially decaying disturbances with a range of time constants.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference19 articles.

1. Anderson, Brian D. O., and Moore, John B., 1971, Linear Optimal Control, Englewood Cliffs, NJ: Prentice Hall.

2. Davis M. H. A. , 1989, “Anticipative LQG Control,” IMA Journal of Mathematical Control & Information, Vol. 6, pp. 259–265.

3. Elbert, Theodore F., 1984, Estimation and Control of Systems, New York: Van Nostrand Reinhold.

4. Friedland, B., 1986, Control Systems Design: An Introduction to State-Space Methods, New York: McGraw-Hill.

5. Gupta, N. K., 1980, “Frequency-Shaped Cost Functionals: Extension of Linear-Quadratic-Gaussian Design Methods,” AIAA Journal of Guidance and Control, Nov.-Dec. pp. 529–535.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Singular Infinite-Horizon $$H_{\infty }$$ Problem;Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems;2022

2. Examples of Singular Extremal Problems and Some Basic Notions;Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems;2022

3. Optimal Preview Control with Uncertain Preview Information with Application to Active Suspension Systems;2021 IEEE Conference on Control Technology and Applications (CCTA);2021-08-09

4. Asymptotic properties of an infinite horizon partial cheap control problem for linear systems with known disturbances;Numerical Algebra, Control & Optimization;2018

5. LiDAR-enabled model predictive control of wind turbines with real-time capabilities;Renewable Energy;2014-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3