Affiliation:
1. Department of Mechanical Engineering, William Marsh Rice University, Houston, TX 77005 e-mail:
2. Department of Diagnostic Science and Engineering, Sandia National Laboratories, Albuquerque, NM 87185
3. Department of Solid Mechanics, Sandia National Laboratories, Albuquerque, NM 87185
Abstract
The results of two sets of impact experiments are reported within. To assist with model development using the impact data reported, the materials are mechanically characterized using a series of standard experiments. The first set of impact data comes from a series of coefficient of restitution (COR) experiments, in which a 2 m long pendulum is used to study “in-context” measurements of the coefficient of restitution for eight different materials (6061-T6 aluminum, phosphor bronze alloy 510, Hiperco, nitronic 60A, stainless steel 304, titanium, copper, and annealed copper). The coefficient of restitution is measured via two different techniques: digital image correlation (DIC) and laser Doppler vibrometry (LDV). Due to the strong agreement of the two different methods, only results from the digital image correlation are reported. The coefficient of restitution experiments are in context as the scales of the geometry and impact velocities are representative of common features in the motivating application for this research. Finally, a series of compliance measurements are detailed for the same set of materials. The compliance measurements are conducted using both nano-indentation and micro-indentation machines, providing sub-nm displacement resolution and μN force resolution. Good agreement is seen for load levels spanned by both machines. As the transition from elastic to plastic behavior occurs at contact displacements on the order of 30 nm, this data set provides a unique insight into the transitionary region.
Funder
National Nuclear Security Administration
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献