Stability of Hydrogen Turbopump Rotor Shaft Axially Self-Balanced

Author:

Martin Seive1,Jean-Michel Nguyen Duc2,Fonteyn Patrice1

Affiliation:

1. Turbomachinery Department, ArianeGroup, Vernon 27200, France

2. ArianeGroup, Vernon 27200, France

Abstract

Abstract Controlling the vibration levels of turbopump rotor shafts is a key feature for the reliability of space engines. Turbopump components are exposed to high static and dynamic stress levels, and therefore are particularly sensitive to high-cycle fatigues. Among the numerous dynamic excitations that affect the turbopump, self-induced instabilities are the most critical ones because of the exponential growth rate of vibration levels. These flutter-like phenomena may account for rotor shaft instabilities of turbopumps designed with an axial balancing system (ABS). Such a system is necessary to avoid heavy static loads on bearings and is commonly used in high power turbopumps in the space industry. It consists of a fluid cavity located in the back of a centrifugal compressor. Instabilities induced by the ABS have been studied within the framework of a research and technology program using a reduced scale hydrogen turbopump demonstrator called TPtech. This paper focuses on experimental and numerical analysis of rotor instabilities induced by the ABS. A coupled dynamic model of the rotor shaft and the ABS cavity is presented. It shows instabilities of the rigid rotor axial mode, but also of an axisymmetric rotor mode. This result is consistent with the data acquired during TPtech test campaign. The instability mechanism is complex as it involves the rotor modes, the flow in the ABS cavity, and its acoustic modes. Therefore, TPtech tests performed in representative conditions are valuable. They have permitted tool validation and have provided design rules to prevent occurrence of such phenomena.

Publisher

ASME International

Subject

Mechanical Engineering

Reference17 articles.

1. Stability of an Axial Thrust Self-Balancing System;ASME J. Fluids Eng.,2013

2. Internal Flow and Axial Thrust Balancing of a Rocket Pump;ASME J. Fluids Eng.,2012

3. Axial Thrust Behavior in LOX-Pump of Rocket Engine;J. Propul. Power,1994

4. Characterization of the Modal Characteristics of Structures Operating in Dense Liquid Turbopumps,2017

5. Experimental Investigation of Fluid Structure Interaction of Impeller Like Disks in Super Critical Carbon Dioxide,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3