The Synthesis Method of Series-Based Bistable Compliant Mechanisms for Rigid-Body Guidance Problem Based on Geometrical Similarity Transformation of Pole Maps

Author:

Jiang Jingyu1,Lin Song1,Wang Hanchao2,Modler Niels3

Affiliation:

1. Tongji University School of Mechanical Engineering, , Shanghai 201804 , China

2. Longyan University School of Physics and Electromechanical Engineering, , Longyan 364030 , China

3. Technische Universität Dresden Institute of Lightweight Engineering and Polymer Technology, , Dresden 01062 , Germany

Abstract

Abstract Designing guidance mechanisms using bistable mechanisms with two stable positions is a common low-power solution for maintaining the guidance position without continuous external energy input. However, the coupling between kinematics and statics in compliant bistable mechanisms poses a challenge for their application in mechanism synthesis. To address this issue, this paper introduces the pole similarity transformation theory into the synthesis of compliant mechanisms and proposes a general synthesis method for planar serial-based compliant bistable mechanisms. This method models the compliant mechanism using the strain energy method and analyzes the bistable characteristics of the mechanism within its motion plane using the saddle point searching method. By doing so, the proposed method can identify stable positions without predetermined motion trajectories, making it more suitable for designing compliant bistable mechanisms with general planar motion. Additionally, this method utilizes the pole map to describe the stable positions of the rigid components in the compliant mechanism and establishes an information database for compliant bistable mechanisms. Through leveraging the pole similarity transformation, the pole maps of the mechanisms in the information database are matched with the pole map of the motion task, thus achieving the synthesis of planar serial-based compliant bistable mechanisms for the rigid-body guidance problem. The paper provides a detailed explanation of the mechanism synthesis process and demonstrates its application through a case study.

Funder

Natural Science Foundation of Fujian Province

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3