Effect of Modal Interactions on Friction-Damped Self-Excited Vibrations

Author:

Woiwode Lukas1,Gross Johann1,Krack Malte1

Affiliation:

1. Institute of Aircraft Propulsion Systems, University of Stuttgart, Stuttgart 70569, Germany

Abstract

Abstract It is well-known that nonlinear dry friction damping has the potential to bound the otherwise unboundedly growing vibrations of self-excited structures. An important technical example are the flutter-induced friction-damped limit cycle oscillations of turbomachinery blade rows. Due to symmetries, natural frequencies are inevitably closely spaced, and they can generally be multiples of each other. Not much is known on the nonlinear dynamics of self-excited friction-damped systems in the presence of such internal resonances. In this work, we analyze this situation numerically by regarding a two degrees-of-freedom system. We demonstrate that in the case of closely-spaced natural frequencies, the self-excitation of the lower-frequency mode gives rise to non-periodic oscillations, and the occurrence of unbounded behavior well before reaching the maximum friction damping value. If the system is close to a 1:3 internal resonance, limit cycles associated with much higher frictional damping appear, however, most of these are unstable. If more than one mode is subjected to self-excitation, the maximum resistance against self-excitation is at least given by the damping capacity of the most weakly friction-damped mode. These results are of high technical relevance, as the prevailing practice is to analyze only periodic limit states and argue the stability solely by the slope of the damping-amplitude curve. Our results demonstrate that this practice leads to considerable mis- and overestimation of the resistance against self-excitation, and a more rigorous stability analysis is required.

Publisher

ASME International

Subject

General Engineering

Reference19 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3