Rig and Engine Validation of the Nonlinear Forced Response Analysis Performed by the Tool OrAgL

Author:

Hartung Andreas1,Hackenberg Hans-Peter1,Krack Malte2,Gross Johann2,Heinze Torsten3,Panning-von Scheidt Lars4

Affiliation:

1. MTU Aero Engines AG, Dachauer Straße 665, Munich 80995, Germany e-mail:

2. Institute of Aircraft Propulsion Systems, Department of Aerospace Engineering, University of Stuttgart, Pfaffenwaldring 6, Stuttgart 70569, Germany e-mail:

3. Institute of Dynamics and Vibration Research, Department of Mechanical Engineering, Leibniz University of Hannover, Appelstraße 11, Hannover 30167, Germany e-mail:

4. Institute of Dynamics and Vibration Research, Department of Mechanical Engineering Leibniz University of Hannover, Appelstraße 11, Hannover 30167, Germany e-mail:

Abstract

Since the first nonlinear forced response validation of frictionally coupled bladed disks, more than 20 years have passed, and numerous incremental modeling and simulation refinements were proposed. With the present work, we intend to assess how much we have improved since then. To this end, we present findings of an exhaustive validation campaign designed to systematically validate the nonlinear vibration prediction for the different friction joints at blade roots, interlocked shrouds and under-platform dampers. An original approach for the identification of crucial contact properties is developed. By using the dynamic Lagrangian contact formulation and a refined spatial contact discretization, it is demonstrated that the delicate identification of contact stiffness properties can be circumvented. The friction coefficient is measured in a separate test, and determined as unique function of temperature, preload, wear state. Rotating rig and engine measurements are compared against simulations with the tool OrAgL, developed jointly by the Leibniz Universität Hannover and the University of Stuttgart, in which state-of-the-art component mode synthesis (CMS) and harmonic balance methods (HBMs) are implemented.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3