Geometric Accuracy Prediction and Improvement for Additive Manufacturing Using Triangular Mesh Shape Data

Author:

Decker Nathan1,Lyu Mingdong1,Wang Yuanxiang1,Huang Qiang1

Affiliation:

1. Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, 3715 McClintock Avenue, GER 240, Los Angeles, CA 90089

Abstract

Abstract One major impediment to wider adoption of additive manufacturing (AM) is the presence of larger-than-expected shape deviations between an actual print and the intended design. Since large shape deviations/deformations lead to costly scrap and rework, effective learning from previous prints is critical to improve build accuracy of new products for cost reduction. However, products to be built often differ from the past, posing a significant challenge to achieving learning efficacy. The fundamental issue is how to learn a predictive model from a small set of training shapes to predict the accuracy of a new object. Recently an emerging body of work has attempted to generate parametric models through statistical learning to predict and compensate for shape deviations in AM. However, generating such models for 3D freeform shapes currently requires extensive human intervention. This work takes a completely different path by establishing a random forest model through learning from a small training set. One novelty of this approach is to extract features from training shapes/products represented by triangular meshes, as opposed to point cloud forms. This facilitates fast generation of predictive models for 3D freeform shapes with little human intervention in model specification. A real case study for a fused deposition modeling (FDM) process is conducted to validate model predictions. A practical compensation procedure based on the learned random forest model is also tested for a new part. The overall shape deviation is reduced by 44%, which shows a promising prospect for improving AM print accuracy.

Funder

National Science Foundation

Rose Hills Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3