Parametric Study of Tip Clearance—Casing Treatment on Performance and Stability of a Transonic Axial Compressor

Author:

Beheshti Behnam H.1,Teixeira Joao A.2,Ivey Paul C.2,Ghorbanian Kaveh3,Farhanieh Bijan1

Affiliation:

1. School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

2. Turbomachinery, Icing and Gas Turbine Instrumentation Group, School of Engineering, Cranfield University, United Kingdom

3. School of Aerospace Engineering, Sharif University of Technology, Tehran, Iran

Abstract

The control of tip leakage flow through the clearance gap between the moving and stationary components of rotating machines is still a high-leverage area for improvement of stability and performance of aircraft engines. Losses in the form of flow separation, stall, and reduced rotor work efficiency are results of the tip leakage vortex (TLV) generated by interaction of the main flow and the tip leakage jet induced by the blade pressure difference. The effects are more detrimental in transonic compressors due to the interaction of shock TLV. It has been previously shown that the use of slots and grooves in the casing over tip of the compressor blades, known as casing treatment, can substantially increase the stable flow range and therefore the safety of the system but generally with some efficiency penalties. This paper presents a numerical parametric study of tip clearance coupled with casing treatment for a transonic axial-flow compressor NASA Rotor 37. Compressor characteristics have been compared to the experimental results for smooth casing with a 0.356 mm tip clearance and show fairly good agreement. Casing treatments were found to be an effective means of reducing the negative effects of tip gap flow and vortex, resulting in improved performance and stability. The present work provides guidelines for improvement of steady-state performance of the transonic axial-flow compressors and improvement of the stable operating range of the system.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3