Surface-Stabilized Fuel Injectors With Sub-Three PPM NOx Emissions for a 5.5 MW Gas Turbine Engine

Author:

Greenberg Steven J.1,McDougald Neil K.1,Weakley Christopher K.1,Kendall Robert M.1,Arellano Leonel O.2

Affiliation:

1. ALZETA Corporation, 2343 Calle del Mundo, Santa Clara, CA 95054

2. Solar Turbines, 2200 Pacific Highway, San Diego, CA 92186

Abstract

ALZETA Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultralow NOx emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively perforated porous metal surface. This allows stable operation at low reaction temperatures. A previous ASME paper (IJPGC2002-26088) described the development of this technology from the proof-of-concept stage to prototype testing. In 2002 development of these fuel injectors for the 5.5 MW turbine accelerated. Additional single-injector rig tests were performed which also demonstrated ultralow emissions of NOx and CO at pressures up to 1.68 MPa (16.6 atm) and inlet temperatures up to 670°K (750°F). A pressurized multi-injector “sector rig” test was conducted in which two injectors were operated simultaneously in the same geometric configuration as that expected in the engine combustor liner. The multi-injector package was operated with various combinations of fired and unfired injectors, which resulted in low emissions performance and no adverse affects due to injector proximity. To date sub-3 ppm NOx emissions with sub-10 ppm CO emissions have been obtained over an operating range of 0.18–1.68 MPa (1.8–16.6 atm), inlet temperatures from 340 to 670K (186–750°F), and adiabatic flame temperatures from 1740 to 1840K (2670–2850°F). A full scale multi-injector engine simulation is scheduled for the beginning of 2003, with engine tests beginning later that year.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3