Experimental Evaluation of Vortex Induced Vibration Response of Straked Pipes in Tandem Arrangements

Author:

Blumberg Matthew1,Tellier Elizabeth1,Deka Dhyanjyoti2,Zhou Tongming3

Affiliation:

1. 2H Offshore Engineering, Perth, WA, Australia

2. 2H Offshore Inc., Houston, TX

3. The University of Western Australia, Perth, WA, Australia

Abstract

Vortex induced vibration (VIV) due to steady current flow can be a significant driver in the design of offshore riser systems, affecting riser global configuration, component details and overall subsea architecture. Helical strakes are known to reduce VIV but the degree of effectiveness can vary considerably depending on strake pitch, fin height and more importantly, current flow regime. In addition, the amplitude of VIV and the effectiveness of VIV suppression strakes depends on the inclination of flow to the riser (incidence angle) and presence of wake effects from adjacent risers. Test and field data regarding suppression of riser VIV by strakes is not extensively available in the public domain. This is primarily due to the proprietary nature of the tests conducted in industry. In this paper, a program of testing is devised to better understand strake effectiveness as a function of current incidence angle and the presence of adjacent risers. Experiments have been conducted on single and tandem pipe arrangements in air in order to evaluate strake suppression efficiency. Aluminium cylinders are tested in a wind tunnel in the structures laboratory of The University of Western Australia (UWA). Two sets of experiments are conducted: the first to evaluate cylinder VIV response at angles of incidence ranging from 30 to 90 degrees and the second to evaluate VIV response of the downstream pipe in a dual pipe arrangement with varying spacing between the pipes. In both cases the bare cylinders are first tested at varying flow speeds. Helical strakes are then added to the single cylinder, and downstream cylinder in the tandem pipe test, and the vibration response is recorded at varying flow speeds. From the experimentation, it can be seen that downstream cylinder motions are amplified by wake induced instability. This phenomenon is of particular concern for tightly spaced top-tensioned risers (TTR) in wellbays of tension leg platforms (TLP) and deep draft floaters. The VIV motion of the downstream, bare, wake-affected pipe, is magnified to approximately 1.3–2 times the motion of a single bare pipe. When strakes are added to the downstream cylinder, the magnification factor of the downstream cylinder response is largely increased due to the wake of the upstream bare cylinder. However, the actual VIV motions of the downstream cylinder are largely reduced when strakes are incorporated. The present work demonstrates that helical strakes provide an effective means of suppressing vortex induced vibrations of risers in riser arrays, though the degree of effectiveness is reduced in a downstream tubular compared to suppression levels for single pipes.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3