A Novel Damping Device for Broadband Attenuation of Low-Frequency Combustion Pulsations in Gas Turbines

Author:

Bothien Mirko R.1,Noiray Nicolas,Schuermans Bruno2

Affiliation:

1. e-mail: mirko.bothien@power.alstom.com

2. Alstom,5401 Baden, Switzerland

Abstract

Abstract Damping of thermoacoustically induced pressure pulsations in combustion chambers is a major focus of gas turbine operation. Conventional Helmholtz resonators are an excellent means to attenuate thermoacoustic instabilities in gas turbines. Usually, however, the damping optimum is in a narrow frequency band at one operating condition. The work presented here deals with a modification of the basic Helmholtz resonator design overcoming this drawback. It consists of a damper body housing multiple volumes that are connected to each other. Adequate adjustment of the governing parameters results in a broadband damping characteristic for low frequencies. In this way, changes in operating conditions and engine-to-engine variations involving shifts in the combustion pulsation frequency can conveniently be addressed. Genetic algorithms and optimization strategies are used to derive these parameters in a multidimensional parameter space. The novel damper concept is described in more detail and compared with cold-flow experiments. In order to validate the performance under realistic conditions, the new broadband dampers were implemented in a full-scale test engine. Pulsation amplitudes could be reduced by more than 80%. In addition, it is shown that, due to sophisticated damper placement in the engine, two unstable modes can be addressed simultaneously. Application of the damper concept allowed a considerable increase of the engine operating range, thereby reducing NOx emissions by 55%. Predictions obtained with the physics-based model excellently agree with experimental results for all tested damper geometries, bias flows, excitation amplitudes, and most importantly with the measurements in the engine.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference31 articles.

1. On the Use of Helmholtz Resonators for Damping Acoustic Pulsations in Industrial Gas Turbines;ASME J. Eng. Gas Turb. Power,2004

2. Thermoacoustic Modeling of a Gas Turbine Combustor Equipped With Acoustic Dampers;ASME J. Turbomach.,2005

3. A Numerical and Experimental Investigation of the Dissipation Mechanisms of Resonant Acoustic Liners;J. Sound Vib.,2001

4. The Absorption of Axial Acoustic Waves by a Perforated Liner With Bias Flow;J. Fluid Mech.,2003

5. Randeberg, R., 2000, “Perforated Panel Absorbers With Viscous Energy Dissipation Enhanced by Orifice Design,” Ph.D. thesis, Department of Telecommunications, Norwegian University of Science and Technology, Trondheim, Norway, http://ntnu.diva-portal.org/smash/get/diva2:125365/FULLTEXT01

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3