Nonlinear Free-Surface and Viscous-Internal Sloshing

Author:

Valentine Daniel T.1,Frandsen Jannette B.2

Affiliation:

1. Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13699-5725

2. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803

Abstract

This paper examines free-surface and internal-pycnocline sloshing motions in two-dimensional numerical wave tanks subjected to horizontal excitation. In all of the cases studied, the rectangular tank of liquid has a width-to-depth ratio of 2. The first set of results are based on an inviscid, fully nonlinear finite difference free-surface model. The model equations are mapped from the physical domain onto a rectangular domain. Case studies at and off resonance are presented illustrating when linear theory is inadequate. The next set of results are concerned with analyzing internal waves induced by sloshing a density-stratified liquid. Nonlinear, viscous flow equations are solved. Two types of breaking are discussed. One is associated with a shear instability which causes overturning on the lee side of a wave that moves towards the center of the container; this wave is generated as the dominant sloshing mode recedes from the sidewall towards the end of the first sloshing cycle. The other is associated with the growth of a convective instability that initiates the formation of a lip of heavier fluid above lighter fluid behind the crest of the primary wave as it moves up the sidewall. The lip grows into a bore-like structure as it plunges downward. It falls downward behind the primary wave as the primary wave moves up the sidewall and ahead of the primary wave as this wave recedes from the sidewall. This breaking event occurs near the end of the first cycle of sloshing, which is initiated from a state of rest by sinusoidal forcing.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference28 articles.

1. Recent Advances in Liquid Sloshing Dynamics;Ibrahim;Appl. Mech. Rev.

2. Chang, P. A., Percival, S., and Hill, B., 1996, “Computations of Two-Fluid Flows through Two Compartments of a Compensated Fuel∕Ballast Tank,” Hydromechanics Directorate Research and Development Report No. CRDKNSWC∕HD-1370-01.

3. Small-Scale Hydrodynamics of Lakes;Wüest;Annu. Rev. Fluid Mech.

4. An Experimental Study of Standing Waves;Taylor;Proc. R. Soc. London, Ser. A

5. Part II. finite periodic stationary gravity waves in a perfect liquid

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3