Additional Test Results for Round-Hole-Pattern Damper Seals: Leakage, Friction Factors, and Rotordynamic Force Coefficients

Author:

Childs D. W.1,Nolan S. A.2,Kilgore J. J.3

Affiliation:

1. Texas A&M University, College Station, TX 77843

2. Rockwell International, Rocketdyne Division, Canoga Park, CA 91304

3. Shell Development Company, Westhollow Research Center, Houston, TX 77082

Abstract

Test results are presented for round-hole-pattern damper seals at Reynolds numbers on the order of 90,000 to 250,000. The seals have roughened stators; Cr/R = 0.0075 and L/D = 1/2. The fluid CBrF3 entering the test seals has no intentional prerotation, i.e., the fluid is injected radially into the apparatus. There is no tangential injection; and no “slinger” is provided upstream of the seals. Test results consist of leakage rates, axial pressure gradients, friction factors, and rotordynamic-force coefficients. The hole-pattern-stator seals leak approximately one third less than smooth seals at the same clearances, have approximately the same damping performance, and about 20 percent lower stiffness values. Unlike earlier tests (Childs and Kim, 1986), variations in hole depth to radial clearance ratios h/Cr showed no clear optimum with respect to damping. Increasing the ratio of hole area to surface area from 0.27 to 0.34 to 0.42 showed no damping change, in moving from 0.27 to 0.34, but a substantial drop in moving from 0.34 to 0.42. Measured friction factors showed serious deviations from the assumed Blasius friction-factor model for wall-shear stress for some stators, particularly in regard to speed dependency. Despite these deviations, theoretical predictions based on measured friction factors are generally reasonable. Direct stiffness predictions are generally within 20 percent. Damping predictions are generally within 5 percent.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3