Numerical Simulation of Mass Transport in a Microchannel Bioreactor With Cell Micropatterning

Author:

Zeng Yan1,Lee Thong-See1,Yu Peng1,Low Hong-Tong2

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore

2. Division of Bioengineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore

Abstract

Micropatterning of two different cell types based on surface modification allows spatial control over two distinct cell subpopulations. This study considers a micropatterned coculture system, which has release and absorption parts alternately arranged at the base, and each part has a single cell type. A micropattern unit was defined and within each unit, there are one release part and one absorption part. The cells in the absorption parts consume species, which are secreted by the cells in the release parts. The species concentrations at the micropatterned cell base were computed from a three-dimensional numerical flow model incorporating mass transport. Different combined parameters were developed for the release and absorption parts to make the data collapse in each part. Combination of the collapse data in the release and absorption parts can be used to predict the concentration distribution through the whole channel. The correlated results were applied to predict the critical length ratio of the release and absorption parts for an actual micropatterned system (Bhatia et al., 1999, “Effect of Cell-Cell Interactions in Preservation of Cellular Phenotype: Co-Cultivation of Hepatocytes and Nonparenchymal Cell,” FASEB J. 13, pp. 1883–1900) to avoid species insufficiency based on basic fibroblast growth factor (bFGF). The mass transfer effectiveness was found to be higher with more numbers of micropattern units. The optimal condition for micropatterned coculture bioreactors is achieved by having the product of the length ratio and the reaction ratio equal to 1. This condition was used to optimize the mass transfer in the micropatterned system (Bhatia et al., 1999, “Effect of Cell-Cell Interactions in Preservation of Cellular henotype: Co-Cultivation of Hepatocytes and Nonparenchymal Cell,” FASEB J. 13, pp. 1883–1900) based on bFGF.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3