An Experimental Powered Lower Limb Prosthesis Using Proportional Myoelectric Control

Author:

Huang Stephanie12,Wensman Jeffrey P.34,Ferris Daniel P.156

Affiliation:

1. Human Neuromechanics Laboratory, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109;

2. Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:

3. University of Michigan Orthotics and Prosthetics Center, 2850 South Industrial Highway, Suite 400, Ann Arbor, MI 48104;

4. Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48109

5. Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109;

6. School of Kinesiology, University of Michigan, Ann Arbor, MI 48109

Abstract

One way to provide powered lower limb prostheses with greater adaptability to a wearer's intent is to use a neural signal to provide feedforward control of prosthesis mechanics. We designed and tested the feasibility of an experimental powered ankle-foot prosthesis that uses pneumatic artificial muscles and proportional myoelectric control to vary ankle mechanics during walking. The force output of the artificial plantar flexor muscles was directly proportional to the subject's residual gastrocnemius muscle activity. The maximum force generated by a pair of artificial muscles fixed at nominal length was 3513 N. The maximum planter flexion torque that could be generated during walking was 176 Nm. The force bandwidth of the pneumatic artificial muscles was 2 Hz. The electromechanical delay was 33 ms, the time to peak tension was 48 ms, and the half relaxation time was 50 ms. We used two artificial muscles as dorsiflexors and two artificial muscles as plantar flexors. The prosthetic ankle had 25 deg of dorsiflexion and 35 deg of plantar flexion with the artificial muscles uninflated. The intent of the device was not to create a commercially viable prosthesis but to have a laboratory prototype to test principles of locomotor adaptation and biomechanics. We recruited one unilateral transtibial amputee to walk on a treadmill at 1.0 m/s while wearing the powered prosthesis. We recorded muscle activity within the subject's prescribed prosthetic socket using surface electrodes. The controller was active throughout the entire gait cycle and did not rely on detection of gait phases. The amputee subject quickly adapted to the powered prosthesis and walked with a functional gait. The subject generated peak ankle power at push off that was similar between amputated and prosthetic sides. Our results suggest that amputees can use their residual muscles for proportional myoelectric control to alter prosthetic mechanics during walking.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference17 articles.

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3