Film Condensation of Steam on Horizontal Finned Tubes: Effect of Fin Spacing

Author:

Wanniarachchi A. S.1,Marto P. J.1,Rose J. W.2

Affiliation:

1. Department of Mechanical Egineering, Naval Postgraduate School, Monterey, CA 93943

2. Department of Mechanical Engineering, Queen Mary College, University of London, London, United Kingdom

Abstract

The film condensation heat transfer performance of six externally finned copper tubes has been evaluated. All tubes had rectangular-shaped fins with a height and thickness of 1 mm. The spacing between fins was 0.5, 1.0, 1.5, 2.0, 4.0, and 9.0 mm. Data were also obtained for a smooth tube whose outside diameter of 19.0 mm was equal to the diameter at the base of the fins for all of the finned tubes. Tests were performed both at atmospheric pressure and under vacuum (∼ 11.3 kPa). Steam flowed vertically downward with a velocity of approximately 1 and 2 m/s at atmospheric pressure and under vacuum, respectively. The smooth tube was fitted with wall thermocouples for the evaluation of the water-side heat transfer coefficient. This was used, subsequently, to determine the steam-side heat transfer coefficient for the finned tubes for which only overall measurements were made. Strenuous efforts were made to obtain high-accuracy data; in particular, the coolant temperature rise was determined by both quartz-crystal thermometers and a 10-junction thermopile. The two temperature-rise measurements always agreed to within ± 0.03 K. Care was taken to avoid errors due to the presence of noncondensing gases and to ensure that filmwise condensation conditions prevailed over the entire tube throughout all tests. The steam-side heat transfer coefficient for the smooth tube agreed closely with values found by other recent workers. Maximum steam-side enhancement was found for the tube with a fin spacing of 1.5 mm. At this fin spacing, the heat transfer enhancement ratios were around 3.6 and 5.2 for low-pressure and atmospheric pressure runs, respectively.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3