Stochastic Analysis of Lubrication in Misaligned Journal Bearings

Author:

Ma Jiaojiao1,Fu Chao2,Zhu Weidong3,Lu Kuan2,Yang Yongfeng2

Affiliation:

1. School of Mechatronics Engineering, Foshan University, Foshan 528000, China

2. Institute of Vibration Engineering, Northwestern Polytechnical University, Xi’an 710072, China

3. Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250

Abstract

Abstract Misalignment is common in hydrodynamic journal bearings and the causes of it can be diversified, making the lubrication performance exhibits stochasticity. Lubricant viscosity often heavily depends on temperature, which may vary during service and result in unexpected deviations. This article analyzes the stochastic lubrications of a cylindrical hydrodynamic journal bearing with misalignment under uncertainties. The stochastic Reynolds equation governing the misaligned journal bearing is discretized by the polynomial chaos expansion (PCE), an efficient uncertainty tracking tool, and then solved by the finite difference method to obtain sampled lubrication. The crude Monte Carlo simulation is used to verify the performance of the PCE frame. Various critical lubrication performance parameters are studied comprehensively by the ensemble mean, standard deviation, probability density function, and cumulative distribution function. Insightful inspections are provided on the stochastic results, and it is found that the misalignment and different stochastic parameters may cause significant effects on the lubrication performance. The new findings in the present study will guide the robust design and analysis of general hydrodynamic journal bearings.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3