A Combined Organic Rankine Cycle With Double Modes Used for Internal Combustion Engine Waste Heat Recovery

Author:

Zhu Guohui1,Liu Jingping1,Fu Jianqin23,Wang Shuqian1

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China e-mail:

2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;

3. Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of China, Chongqing University, Chongqing 400044, China e-mail:

Abstract

A combined organic Rankine cycle (ORC) was proposed for both engine coolant energy recovery (CER) and exhaust energy recovery (EER), and it was applied to a gasoline direct injection (GDI) engine to verify its waste heat recovery (WHR) potential. After several kinds of organic working medium were compared, R123 was selected as the working fluid of this ORC. Two cycle modes, low-temperature cycle and high-temperature cycle, were designed according to the evaporation way of working fluid. The working fluid is evaporated by coolant heat in low-temperature cycle but by exhaust heat in high-temperature cycle. The influence factors of cycle performance and recovery potential of engine waste heat energy were investigated by cycle simulation and parametric analysis. The results show that recovery efficiency of waste heat energy is influenced by both engine operating conditions and cycle parameters. At 2000 r/min, the maximum recovery efficiency of waste heat energy is 7.3% under 0.2 MPa brake mean effective pressure (BMEP) but 10.7% under 1.4 MPa BMEP. With the combined ORC employed, the fuel efficiency improvement of engine comes up to 4.7% points under the operations of 2000 r/min and 0.2 MPa BMEP, while it further increases to 5.8% points under the operations of 2000 r/min and 1.4 MPa BMEP. All these indicate that the combined ORC is suitable for internal combustion (IC) engine WHR.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3