Modeling of a Fully Flexible 3PRS Manipulator for Vibration Analysis

Author:

Zhou Zili1,Xi Jeff2,Mechefske Chris K.1

Affiliation:

1. Department of Mechanical Engineering, Queen’s University, Kingston, Ontario, K7L 3N6, Canada

2. Department of Aerospace Engineering, Ryerson University, Toronto, Ontario, M5B 2K3, Canada

Abstract

In this paper we provide a vibration analysis model and the modeling method for a fully flexible 3-Parallel-Revolute-joint-and-Spherical-joint (3PRS) manipulator—a sliding-leg tripod with flexible links and joints. A series of tripod configurations are set by rigid kinematics for simulation and experiment. All the links are modeled by finite elements: triangular membranes combined with bending plates for the moving platform and spatial beams for the legs. The joint complication is overcome by modeling the joint constraints as virtual springs. The nodal coordinates are statically condensed in order to validate the model. Using eigenvalue sensitivity analysis in terms of the condensed coordinates, the stiffness parameters of the joint virtual springs are adjusted in the experimental configurations until the acceleration frequency response functions (FRFs) from the calculation agree with the ones from the impact tests. The adjusted joint parameters are interpolated linearly into a series of configurations in simulation. The analysis shows that the model with the modified joints proposed in this paper is more effective than the conventional model with ideal joints for predicting the system natural frequencies and their variations against different tripod configurations. The good agreement between the simulation and the experiment at resonant peaks of the FRFs indicates the effectiveness of the modeling method.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3