Pyrolysis of Delonix Regia and Characterization of Its Pyrolytic Products: Effect of Pyrolysis Temperature

Author:

Kawale Harshal D.1,Kishore Nanda1

Affiliation:

1. Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

Abstract

Abstract Pyrolysis of a rarely researched biomass feedstock, Delonix regia (DR), at different pyrolysis temperatures carried out in a tubular reactor at an atmospheric pressure of one bar. In addition to the fuel and physical properties of produced bio-oil and bio-char, extensive advanced characterization of these products, viz. Fourier transformation infrared (FTIR), GC-MS, proton (1H) nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD), etc. is also performed as applicable to different products. The main emphasis of this work is on both quantitative and qualitative analysis of pyrolytic bio-oil and bio-char obtained from DR at 500–700 °C. In this range of temperature, higher heating value (HHV) of bio-oil found to be varying between 20.88 MJ/kg and 25.70 MJ/kg following increasing trend with the temperature. However, HHV of bio-char observed to be almost unaffected by pyrolysis temperature, and it is approximately 36 MJ/kg. The density of bio-oil found to be decreasing from 0.95 g/cc to 0.88 g/cc as the pyrolysis temperature increases from 500 to 700 °C; however, pH is found to be almost unaffected by the pyrolysis temperature changing only slightly from 3.4 to 3.3. Furthermore, the moisture content of bio-oil is also found to be unaffected by the temperature variations. From the GC-MS chromatograms of bio-oils, it is found that benzene is highest area % (with 14.6%) and phenol, 2,6-dimethoxy is the second-highest area % occupying component (with 10.5%) in bio-oil obtained at 600 °C of pyrolysis temperature. This result indicates that the DR feedstock is also an excellent resource for producing value-added green chemicals.

Funder

Science and Engineering Research Board

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3