Affiliation:
1. 1533 Ellis Rd Apt B3 B003 Durham, NC 27703-6366
2. Hudson Hall Mechanical Engineering ATTN: Robert Kielb Durham, NC 27708
3. Dept. of Mechanical Engineering and Materials Science Durham, NC 27708
Abstract
Abstract
This paper expands upon a multi-degree-of-freedom, Van der Pol oscillator used to model buffet and Nonsynchronous Vibrations (NSV) in turbines. Two degrees-of-freedom are used, a fluid tracking variable incorporating a Van der Pol oscillator and a classic spring, mass, damper mounted cylinder variable; thus, this model is one of fluid-structure interaction. This model has been previously shown to exhibit the two main aspects of NSV. The first is the lock-in or entrainment phenomenon of the fluid shedding frequency jumping onto the natural frequency of the oscillator, while the second is a stable limit cycle oscillation (LCO) once the transient solution disappears. Improvements are made to the previous model to better understand this aeroelastic phenomenon. First, an error minimizing technique through a system identification method is used to tune the coefficients in the Reduced Order Model (ROM) to improve the accuracy in comparison to experimental data. Secondly, a cubic stiffness term is added to the fluid equation; this term is often seen in the Duffing Oscillator equation, which allows this ROM to capture the experimental behavior more accurately, seen in previous literature. The finalized model captures the experimental cylinder data found in literature much better than the previous model. These improvements also open the door for future models, such as that of a pitching airfoil or a turbomachinery blade, to create a preliminary design tool for studying NSV in turbomachinery.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献