Coolant Jets Blowing Across the Airfoil Stagnation Line to Enhance Film Effectiveness

Author:

Holgate Nicholas E.1,Ireland Peter T.1,Romero Eduardo2

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

2. Rolls-Royce plc, Bristol BS34 7QE, UK

Abstract

Abstract A novel airfoil leading edge film cooling design has been investigated, and its performance over conventional alternatives quantified. In conventional designs, the region near the geometric stagnation line is typically between the two most upstream film hole rows, which each emit coolant in the downstream direction on their respective sides of the airfoil. This region is thus relatively starved of coolant flow and adequate cooling is achieved inefficiently with a high density of holes expelling a large amount of coolant in order to dilute the nearby mainstream flow. Drawing inspiration from recent literature on reverse-blowing film cooling holes, several film cooling geometries have been designed and tested with a view to improving upon this situation by blowing coolant from each side of the airfoil geometric stagnation line to the other in a criss-cross pattern. This is found to be capable of producing much higher film effectiveness near the stagnation line than a series of more conventional designs which were also tested, without decreasing downstream film effectiveness. A method is also described for using experimental film effectiveness data to estimate two novel measures of the efficiency of leading edge film coolant usage: the proportion of the mainstream which interacts with leading edge film coolant and the proportion of coolant from the two most upstream film hole rows which reaches the stagnation line.

Funder

Rolls-Royce

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. An Experimental and Computational Parametric Investigation of Flow Conditions in Intersecting Circular Passages;Nowlin,2007

2. Numerical Simulation of Fluid Flow and Heat Transfer of Film Cooling With Backward Injection;Li,2010

3. Numerical Simulation on Gas Turbine Film Cooling of Curved Surface With Backward Injection;Shetty,2012

4. Numerical Simulation of Backward Film Cooling With Fan-Shaped Holes;Subbuswamy,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3