Low-Dimensional Modeling of a Pumping Unit to Cope With Multiphase Flow

Author:

Omrani Ala E.1,Franchek Matthew A.2,Ebrahimi Behrouz1,Mutlu Mete1,Grigoriadis Karolos3

Affiliation:

1. Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, N285 Engineering Building 1, Houston, TX 77204 e-mail:

2. Professor Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, W214 Engineering Building 2, Houston, TX 77204 e-mail:

3. Professor Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, W212 Engineering Building 2, Houston, TX 77204 e-mail:

Abstract

Pumping unit efficiency is highly disturbed by the presence of gas influx reducing the productivity and inducing unpredictable system response due to the change of its intrinsic properties such as the natural frequency. A poor estimation of those properties may affect the on-field crew and system safety as well as the production rate. The purpose of this paper is to construct a hydromechanical model describing the coupled multiphase flow-pumping unit system dynamics and to develop a procedure to control the pumping speed for safety assurance and oil production maximization. A coupled mechanical-multiphase flow model capturing the interplay between the gas void fraction (GVF) and the driving harmonic force of the pumping unit is developed. Specifically, the predicted downhole pressure is used to determine the sucker rod effective load. Consequently, a reduced-order model, capturing the dynamics of the sucker rod, is used to estimate the saddle bearings axial displacements which are function of polished rod loading. An error-driven adaptation using the difference between presumed bearing displacement with known GVF and the predicted bearing displacement from the proposed multiphysics model is employed to estimate the unknown downhole GVF. The obtained results prove that the adaptation allows an accurate evaluation of the pumped fluid's GVF, thereby circumventing the need for a costly and inaccurate measurement of the two-phase flow gas fraction. Based on this estimation, a control strategy is then proposed to regulate the pump speed while avoiding the resonance frequency of the sucker-rod system.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3