Lubrication of Microelectromechanical Devices Using Liquids of Different Viscosities

Author:

Ku I. S. Y.1,Reddyhoff T.1,Wayte R.1,Choo J. H.2,Holmes A. S.3,Spikes H. A.1

Affiliation:

1. Tribology Group Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom

2. Materials Group Department of Mechanical Engineering, The National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore

3. Optical and Semiconductor Devices Group Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom

Abstract

Lubrication of contacting and sliding surfaces in MEMS (microelectromechanical systems) is particularly challenging because of the predominance of surface forces at the microscale. The current paper explores the possibility of using liquid lubrication in this application. Measurements of friction and lubricant film thickness have been made for liquid lubricants of different viscosities, including low viscosity silicone oil, hexadecane, squalane, and water. Testing was carried out using a newly developed MEMS tribometer in which a rotating silicon disk is loaded against a stationary silicon disk. Two different test setups were used: one where both disks are flat, and the other where the stationary disk is structured as in a thrust pad bearing. In all tests the disks were fully submerged in the lubricant. With the flat-on-patterned disk combination, the variation of friction with rotation speed was found to follow classical Stribeck curves for all the lubricants tested. The friction at high speeds also decreased with increasing normal load, in accordance with hydrodynamic lubrication theory. For the least viscous lubricants, it was found that the hydrodynamic friction coefficients remained relatively low even at higher speeds. In particular, for water the friction coefficient for water was around 0.1 at 10,000 rpm. However, boundary friction was found to be unacceptably high at low speeds where there was insufficient lubricant entrainment. The experimental results have been compared with a finite difference solution of Reynolds equation and reasonable agreement is seen between theory and experiment. The results indicate that liquid lubrication is potentially an effective means of lubricating MEMS components with high levels of sliding.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3