Flexibility Factors and Stress Indices for Piping Components With D/T ≧ 100 Subjected to In-Plane or Out-of-Plane Moment

Author:

Fujimoto T.1,Soh T.1

Affiliation:

1. Kobe Steel, Ltd., Kobe City, Japan

Abstract

The finite element analyses are carried out for the several piping components (D/T ≧ 100) subjected to in-plane or out-of-plane moment. For the stress evaluation of the chemical plant piping systems, ANSI B31.3 is usually applied. But the stress intensification factors and flexibility factors in this code are mainly for a heavy-wall-thickness pipe, so it is necessary to reconsider these factors for a thin-wall-thickness pipe with a large diameter. In our study, several finite element analyses using MSC/NASTRAN program were performed on the pipe bends (elbow or miter bend, 0.01 ≦ h ≦ 0.2) and the unreinforced fabricated tees (50 ≦ D/Tr ≦ 300, 0.5 ≦ d/D ≦ 0.95, 0.25 ≦ Tb/Tr ≦ 0.95), and the empirical formulas for the flexibility factors and the stress indices, due to out-of-plane or in-plane moment, were proposed. Experimental stress analyses for the piping components with D/Tr = 127 were also carried out, and it was confirmed that the results agreed well with the numerical ones.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress intensification factor, sustained stress index and flexibility factor analysis of large D/T elbows;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-08-05

2. Limit load evaluation of inlet pigtail pipe bends with ovality under in-plane bending;Materials Testing;2019-03-01

3. Flexibility Factors for Branch Pipe Connections Subjected to In-Plane and Out-of-Plane Moments;Journal of Pressure Vessel Technology;2005-11-01

4. Correlation of test and FEA results for elbows subjected to out-of-plane loading;Nuclear Engineering and Design;2002-09

5. Flexibility of T-joints;Chemical and Petroleum Engineering;1993-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3