Evaporation-Combustion Affected by In-Cylinder, Reciprocating Porous Regenerator

Author:

Park Chan-Woo1,Kaviany Massoud1

Affiliation:

1. Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125

Abstract

An existing in-cylinder thermal regeneration concept for Diesel engines is examined for the roles of the porous insert motion and the fuel injection strategies on the fuel evaporation and combustion and on the engine efficiency. While the heated air emanating from the insert enhances fuel evaporation resulting in a superadiabatic combustion process (thus increasing thermal efficiency), the corresponding increase in the thermal NOx is undesirable. A two-gas-zone and a single-step reaction model are used with a Lagrangian droplet tracking model that allows for filtration by the insert. A thermal efficiency of 53 percent is predicted, compared to 43 percent of the conventional Diesel engines. The optimal regenerative cooling stroke occurs close to the peak flame temperature, thus increasing the superadiabatic flame temperature and the peak pressure, while decreasing the expansion stroke pressure and the pressure drop through the insert. During the regenerative heating stroke, the heated air enhances the droplet evaporation, resulting in a more uniform, premixed combustion and a higher peak pressure, thus a larger mechanical work.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference14 articles.

1. Ferrenberg, A. J., 1988, “Regenerative Internal Combustion Engine,” US Patent 4,790,284.

2. Ferrenberg, A. J., 1990, “The Single Cylinder Regenerated Internal Combustion Engine,” SAE Paper No. 900911.

3. Ferrenberg, A. J., Williams B. E., and McNeal, S. R., 1995, “Low Heat Rejection Regenerated Diesel Engines for Shipboard Mechanical and Electrical Power (Part2),” Contract N00167-92-C-0020.

4. Park, C.-W., and Kaviany, M., 2000, “Combustion-Thermoelectric Tube,” ASME J. Heat Transfer , 122, pp. 721–729.

5. Heywood, J. B., 1988, Internal Combustion Engine Fundamentals, McGraw-Hill.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3