Subband Decomposition Based Output-Only Modal Analysis

Author:

Stein Dalton L.1,Li He-Wen-Xuan1,Chelidze David1

Affiliation:

1. University of Rhode Island Nonlinear Dynamics Laboratory, Fascitelli Center for Advanced Engineering 260, , Kingston, RI 02881

Abstract

AbstractOutput-only modal analysis (OMA) is an indispensable alternative to experimental modal analysis for engineering structures while in operation. Conventional OMA often fails to identify the underlying modal structure with insufficient modal energy contribution. Such low modal participation is expected when the sampled response is subjected to sensor nonlinearity or when specific modes are not directly excited. A novel subband decomposition (SBD) method that resolves modal parameters even with biased modal energy distribution is proposed. It isolates the system response within a narrow frequency subband through a finite impulse response analysis filter bank. Whenever the filter subband captures a resonance, the filtered system response is close-to-singular and contains mainly the resonant mode contribution. A modal cluster metric is defined to identify the resonant normal modes automatically. The modal parameters are also identified and extracted within the subband possessing the locally maximal clustering measure. The proposed method assumes no a priori knowledge of the structure under operation other than the system should have any repeated natural frequencies. Therefore, the SBD algorithm is entirely data-driven and requires minimal user intervention. To illustrate the concept and the accuracy of the proposed SBD, numerical experiments of a linear cantilevered beam with various stationary and non-stationary loading are conducted and compared to other OMA methods. Furthermore, physical experiments on an aluminum cantilever beam examine the method’s applicability in field modal testing. Compared to traditional OMA methods, the numerical and physical experiments show orders of magnitude improvement in modal identification error using the proposed SBD.

Funder

National Science Foundation

Publisher

ASME International

Subject

General Engineering

Reference29 articles.

1. Felber, A. J. , 1994, “Development of a Hybrid Bridge Evaluation System,” Ph.D. dissertation, University of British Columbia, pp. 53–55.

2. Modal Parameter Estimation From Ambient Response Data;Schwarz,2001

3. Transfer Function Estimation in System Identification Toolbox Via Vector Fitting;Ozdemir;IFAC-PapersOnLine,2017

4. On the Effectiveness of Principal Component Analysis for Decoupling Structural Damage and Environmental Effects in Bridge Structures;Sen;J. Sound Vib.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3