Experimental Test and Estimation of the Equivalent Thermoelectric Properties for a Thermoelectric Module

Author:

Luo Ding12,Wang Ruochen3

Affiliation:

1. School of Automotive, and Traffic Engineering;

2. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China

3. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

Abstract When analyzing and optimizing the performance of thermoelectric (TE) devices in theory, Seebeck coefficient, thermal conductivity, and electrical resistivity are indispensable TE properties. However, most manufacturers do not provide or overestimate these data. Under the consideration of temperature dependence, this paper discloses an experimental measurement approach to estimate the equivalent Seebeck coefficient, thermal conductivity, and electrical resistivity of a TE module. A thermal resistance network is also established to work out the hot and cold side temperatures of TE legs. Based on a designed test bench, required temperature and electrical parameters in both open circuit and closed circuit are measured and recorded, where the data of open circuit are used to calculate the equivalent Seebeck coefficient and thermal conductivity, and the data of closed circuit are used to calculate the equivalent electrical resistivity. To eliminate the error of parasitic internal resistance, a thermal-electric finite element model is adopted to modify the equivalent electrical resistivity. The modification results indicate that the equivalent internal resistance is about 1.033 times the real internal resistance, and the ratio is related to the working temperature. This work provides a new idea to obtain the TE material properties via an experimental test.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3