Affiliation:
1. Department of Mechanical Engineering, National Institute of Technology, Silchar 788010, Assam, India
Abstract
Abstract
Boussineśq and non-Boussineśq fluid with thermo-physical property variation have been investigated for a vertical fin array. Computations are executed for the range of parameter such as Grashof number 1.86 × 105 and 4.42 × 105, non-dimensional S* = 0.2, 0.3, and 0.5, and non-dimensional clearance C* = 0.10, 0.15, and 0.40. The axial development of various fluid flow quantities, such as the pressure defect (P*), local Nusselt number (Nul), and the bulk temperature of the fluid (θb) has been presented for each of the property combinations. Nul is observed to have reduced by 70% near the exit from the Boussineśq fluid with fixed viscosity and thermal conductivity to the non-Boussineśq fluid with the variable property. Furthermore, the overall Nusselt number (Nu) at S* = 0.2 in an isothermal vertical fin array for an increase in Gr from 1.86 × 105 to 4.42 × 105 with different combination of properties such as Boussineśq fluid with fixed viscosity and thermal conductivity (ρb μc kc), Boussineśq fluid with variable viscosity and thermal conductivity (ρb μv kv), non-Boussineśq fluid with fixed viscosity and thermal conductivity (ρv μc kc), and non-Boussineśq fluid with variable viscosity and thermal conductivity (ρv μv kv) are observed to have an increase of 138%, 148%, 150%, and 160%, respectively.
Subject
Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献