Inferring Extreme Values From Measured Averages Under Deep Uncertainty

Author:

Ben-Haim Yakov1

Affiliation:

1. Yitzhak Moda'i Chair in Technology and Economics, Technion—Israel Institute of Technology, Haifa 32000, Israel

Abstract

Abstract Averages are measured in many circumstances for diagnostic, predictive, or surveillance purposes. Examples include average stress along a beam, average speed along a section of highway, average alcohol consumption per month, average gross domestic product (GDP) over a large region, and a student's average grade over 4 yr of study. However, the average value of a variable reveals nothing about fluctuations of the variable along the path that is averaged. Extremes—stress concentrations, speeding violations, binge drinking, poverty and wealth, and intellectual incompetence in particular topics—may be more significant than the average. This paper explores the choice of design variables and performance requirements to achieve robustness against uncertainty when interpreting an average, in face of uncertain fluctuations of the averaged variable. Extremes are not observed, but robustness against those extremes enhances the ability to interpret the observed average in terms of the extremes. The opportuneness from favorable uncertainty is also explored. We examine the design of a cantilever beam with uncertain loads. We derive four generic propositions, based on info-gap decision theory, that establish necessary and sufficient conditions for robust or opportune dominance, and for sympathetic relations between robustness to pernicious uncertainty and opportuneness from propitious uncertainty. Some of the highlights are as follows: (1) Averages are used for diagnosis, prediction, or surveillance, but hide important extremes. (2) Averages are measured on uncertain varying processes. (3) Info-gap theory is employed to model and manage process uncertainty. (4) Assessing robustness to uncertainty enables interpretation of averages regarding adverse extremes. (5) Assessing opportuneness from uncertainty enables interpretation of averages regarding favorable extremes.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3