Sustainable Energy Solutions for Thermal Load in Buildings—Role of Heat Pumps, Solar Thermal, and Hydrogen-Based Cogeneration Systems

Author:

Cheekatamarla Praveen1,Sharma Vishaldeep1,Shen Bo1

Affiliation:

1. Building and Transportation Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, MS 6070, Oak Ridge, TN 37831

Abstract

Abstract Economic and population growth is leading to increased energy demand across all sectors—buildings, transportation, and industry. Adoption of new energy consumers such as electric vehicles could further increase this growth. Sensible utilization of clean renewable energy resources is necessary to sustain this growth. Thermal needs in a building pose a significant challenge to the energy infrastructure. Potential technological solutions to address growing energy demand while simultaneously lowering the carbon footprint and enhancing the grid flexibility are presented in this study. Performance assessment of heat pumps, solar thermal collectors, nonfossil fuel-based cogeneration systems, and their hybrid configurations is reported in this study. The impact of design configuration, coefficient of performance (COP), electric grid’s primary energy efficiency on the key attributes of total carbon footprint, life cycle costs, operational energy savings, and site-specific primary energy efficiency are analyzed and discussed in detail. Heat pumps and hydrogen-fueled solid oxide fuel cells (SOFCs) are highly effective building energy resources compared to traditional approaches; however, the carbon intensity of electrical energy and hydrogen production are keys to the overall environmental benefit.

Publisher

ASME International

Reference22 articles.

1. How Much Energy Is Consumed in U.S. Buildings?;EIA,2020

2. Tracking Buildings 2020;IEA,2020

3. U.S. Energy Consumption by Source and Sector;Administration, E.I.,2020

4. Advances in Heat Pump Systems: A Review;Chua;Appl. Energy,2010

5. Building Integrated Solar Thermal Collectors—A Review;Buker;Renewable Sustainable Energy Rev.,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3