Influence of In-Plane Dynamics of Thin Compression Rings on Friction in Internal Combustion Engines

Author:

Baker C. E.1,Theodossiades S.1,Rahnejat H.1,Fitzsimons B.2

Affiliation:

1. Wolfson School of Mechanical & Manufacturing Engineering, Loughborough University, Loughborough, UK

2. Aston Martin, Gaydon, Warwickshire, UK

Abstract

The compression ring-bore conjunction accounts for significant frictional parasitic losses relative to its size. The prerequisite to improving the tribological performance of this contact is a fundamental understanding of ring dynamics within the prevailing transient nature of the regime of lubrication. Studies reported thus far take into account ring-bore conformance based on static fitment of the ring within an out-of-round bore, whose out-of-circularity is affected by manufacturing processes, surface treatment, and assembly. The static fitment analyses presume quasi-static equilibrium between ring tension and gas pressure loading with generated conjunctional pressures. This is an implicit assumption of ring rigidity while in situ. The current analysis considers the global modal behavior of the ring as an eigenvalue problem, thus including its dynamic in-plane behavior in the tribological study of a mixed-hydrodynamic regime of lubrication. The results show that the contact transit time is shorter than that required for the ring to reach steady state condition. Hence, the conjunction is not only subject to transience on account of changing contact kinematics and varied combustion loading, but also subject to perpetual ring transient dynamics. This renders the ring-bore friction a more complex problem than usually assumed in idealized ring fitment analyses. An interesting finding of the analysis is increased ring-bore clearance at and in the vicinity of top dead center, which reduces the ring-sealing effect and suggests a possible increase in blow-by. The current analysis, integrating ring in-plane modal dynamics and mixed regime of lubrication, includes salient features, which are a closer representation of practice, an approach which has not hitherto been reported in literature.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3