Solution of the Radiative Transfer Equation in Three-Dimensional Participating Media Using a Hybrid Discrete Ordinates: Spherical Harmonics Method

Author:

Sankar Maathangi,Mazumder Sandip1

Affiliation:

1. Fellow ASME e-mail:  Department of Mechanical and Aerospace Engineering, The Ohio State University Columbus, OH43210

Abstract

In this article, a new hybrid solution to the radiative transfer equation (RTE) is proposed. Following the modified differential approximation (MDA), the radiation intensity is first split into two components: a “wall” component, and a “medium” component. Traditionally, the wall component is determined using a viewfactor-based surface-to-surface exchange formulation, while the medium component is determined by invoking the first-order spherical harmonics (P1) approximation. Recent studies have shown that although the MDA approach is accurate over a large range of optical thicknesses, it is prohibitive for complex three-dimensional geometry with obstructions, both from a computational efficiency as well as memory standpoint. The inefficiency stems from the use of the viewfactor-based approach for determination of the wall-emitted component. In this work, instead, the wall component is determined directly using the control angle discrete ordinates method (CADOM). The new hybrid method was validated for both two-dimensional (2D) and three-dimensional (3D) geometries against benchmark Monte Carlo results for gray media in which the optical thickness was varied over a large range. In all cases, the accuracy of the hybrid method was found to be within a few percent of Monte Carlo results, and comparable to the solutions of the RTE obtained directly using CADOM. Finally, the new hybrid method was explored for 3D nongray media in the presence of reflecting walls and various scattering albedos. As a noteworthy advantage, irrespective of the conditions used, it was always found to be computationally more efficient than standalone CADOM and up to 15 times more efficient than standalone CADOM for optically thick media with strong scattering.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference34 articles.

1. Monte Carlo Methods,1988

2. Surface Radiative Transport at Large Scales via Monte Carlo,1998

3. A Fast Monte Carlo Scheme for Thermal Radiation in Semiconductor Processing Applications;Numer. Heat Transfer Part B,2000

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3