Minimum Air Cooling Requirements for Different Lithium-Ion Battery Operating Statuses

Author:

Wang Yabo1,Yin Xiang1,Li Xueqiang1,Li Hailong23,Liu Shengchun1,Zhu Xinlin1,Ma Xiaolei1

Affiliation:

1. Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce , Tianjin 300134, China

2. Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China ; , Västerås SE-72123, Sweden

3. Future Energy Center, School of Business, Society & Engineering, Mälardalen University Tianjin 300134, China ; , Västerås SE-72123, Sweden

Abstract

Abstract Battery energy storage systems (BESSs) play an important role in increasing the use of renewable energy sources. Owing to the temperature sensitivity of lithium-ion batteries (LIBs), battery thermal management systems (BTMSs) are crucial to ensuring the safe and efficient operation of BESSs. Previous works mainly focused on evaluating the performance of BTMS; however, little attention has been paid to the minimum cooling requirements of BESSs, which are important for optimizing the design and operation of BTMSs. To bridge the knowledge gap, this work investigated the performance of air cooling for a battery cabin under different charge/discharge (C) rates by using a computational fluid dynamics (CFD) model, which is coupled with a battery model. Simulation results show that the inlet airflow rate has the strongest influence. For the studied cases, when the battery operates at C-rates lower than 3, the inlet temperature should be controlled below 35 °C, and the gap between the batteries should be greater than 3 mm to meet the minimum heat dissipation requirement. At a C-rate of 0.5C, natural convection is sufficient to meet the cooling need, whereas at 1C or higher C-rates, forced convection has to be used. Increasing the number of batteries, for example, from 6 to 8, has negligible impact on the inlet flow required to assure the heat dissipation.

Funder

Natural Science Foundation of Tianjin City

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3