Nonlinear Dynamics of Turbine Generator Shaft Trains: Evaluation of Bifurcation Sets Applying Numerical Continuation

Author:

Gavalas Ioannis1,Chasalevris Athanasios1

Affiliation:

1. School of Mechanical Engineering, National Technical University of Athens , Athens, Hellas 15780, Greece

Abstract

Abstract The nonlinear dynamics of turbine generator shaft trains for power generation are investigated in this paper. Realistic models of rotors, pedestals, and nonlinear bearings of partial arc and lemon bore configuration are implemented to compose a nonlinear set of differential equations for autonomous (balanced) and nonautonomous (unbalanced—per ISO) cases. The solution branches of the dynamic system are evaluated with the pseudo-arc length continuation programed by the authors, and the respective limit cycles are evaluated by an orthogonal collocation method and investigated on their stability properties and quality of motion for the respective key design parameters for the rotor dynamic design of such systems, namely, bearing profile and respective pad length, preload and offset, pedestal stiffness and elevation (misalignment), and rotor slenderness. Model order reduction is applied to the finite element rotor model and the reduced system is validated in terms of unbalanced response and stability characteristics. The main conclusion of the current investigation is that the system has the potential to develop instabilities at rotating speeds lower than the threshold speed of instability (evaluated by the linear approach) for specific unbalance magnitude and design properties. Unbalance response (with stable and unstable branches) is evaluated in severely reduced time compared to this applying time integration methods, enabling nonlinear rotor dynamic design of such systems as a standard procedure, and revealing the complete potential of motions (not only local).

Funder

Alexander von Humboldt-Stiftung

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3