Integrated Computational Durability Analysis

Author:

Baek W. K.1,Stephens R. I.2,Dopker B.3

Affiliation:

1. Center for Computer Aided Design, The University of Iowa, Iowa City, IA 52242

2. Mechanical Engineering Dept., The University of Iowa, Iowa City, IA 52242

3. Boeing Computer Services, PO Box 24346, MS 7L-23, Seattle, WA 98124-0346

Abstract

A computer aided analysis method is described for durability assessment in the early design stages using multibody dynamic analysis, finite element stress analysis, and fatigue life prediction methods. From multibody dynamic analysis of a mechanical system, dynamic loads of a mechanical component were calculated. Finite element stress analysis with substructuring techniques produced accurate stress fields for the component. From the dynamic loads and the stress field of the component, a dynamic stress history at the critical location was produced using the superposition principle. Using Neuber’s rule, a local strain time history was produced from the dynamic stress history. The local strain based fatigue life prediction method was then used to predict “crack initiation” life of the critical component. The predicted fatigue crack initiation life was verified by experimental durability tests. This methodology can be combined with identification of weak links and optimization techniques such that the design optimization for an entire mechanical system based upon durability is possible during the early product development stage.

Publisher

ASME International

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3