Impact of Aging on Mechanical Properties of Thermally Conductive Gap Fillers

Author:

Misrak Abel1,Chauhan Tushar1,Rajmane Pavan1,Bhandari Rabin1,Agonafer Dereje1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019

Abstract

Abstract Thermal interface materials (TIMs) are an important component in electronic packaging, and there is a concerted effort to understand their reliability when used under various environmental load conditions. Previous researchers have investigated gap fillers and other types of TIMs to understand their performance degradation under loading conditions such as thermal cycling and thermal aging. Most of the study in the literature focuses on studying the changes in thermal properties, and there is a lack of understanding when it comes to studying the mechanical behavior of TIMs. Degradation of mechanical properties is the cause for the loss in thermal performance and is critical during TIM selection process. Moreover, mechanical properties such as modulus and coefficient of thermal expansion (CTE) are critical to assess performance of TIMs using finite element analysis (FEA) and potentially save time and money in the evaluation and selection process. Due to the very soft nature of TIMs, sample preparation is a challenging part of material characterization. In this paper, commercially available TIMs are studied using testing methods such as thermomechanical analyzer (TMA), dynamic mechanical analyzer (DMA), and Fourier infrared spectroscopy (FTIR). These methods are used to characterize the material properties and study the changes in properties due to aging. In this work, the followings are presented: impact of filler content on the mechanical properties, sample preparation method for curable TIM materials with specified thicknesses, and impact of thermal aging on mechanical properties.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3