A Simplified Robust Circle Criterion Using the Sensitivity-Based Quantitative Feedback Theory Formulation

Author:

Thompson David F.1

Affiliation:

1. Department of Mechanical, Industrial and Nuclear Engineering, University of Cincinnati, P.O. Box 210072, Cincinnati, OH 45221-0072

Abstract

The circle criterion provides a sufficient condition for global asymptotic stability for a specific class of nonlinear systems, those consisting of the feedback interconnection of a single-input, single-output linear dynamic system and a static, sector-hounded nonlinearity. Previous authors (Wang et al, 1990) have noted the similarity between the graphical circle criterion and design bounds in the complex plane stemming from the Quantitative Feedback Theory (QFT) design methodology. The QFT formulation has specific advantages from the standpoint of controller synthesis. However, the aforementioned approach requires that plant uncertainty sets (i.e., “templates”) be manipulated in the complex plane. Recently, a modified formulation for the QFT linear robust performance and robust stability problem has been put forward in terms of sensitivity function bounds. This formulation admits a parametric inequality which is quadratic in the open loop transfer function magnitude, resulting in a computational simplification over the template-based approach. In addition, the methodology admits mixed parametric and nonparametric plant models. The disk inequality which results represents a much closer analog of the circle criterion, requiring only scaling and a real axis shift. This observation is developed in this paper, and the methodology is demonstrated in this paper via feedback design and parametric analysis of a quarter-car active suspension model with a sector nonlinearity.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3