Abstract
Abstract
A mass measurement system which uses a dynamic vibration absorber as measuring device is developed. It can measure mass even under weightless conditions like in space stations. In this system, an object to be measured is fixed to a rotating table (rotor) at a distance from the rotational axis. Since it makes the rotor unbalanced, a centrifugal force causes the supporting structure to vibrate during rotation. A dynamic vibration absorber attached to the structure is tuned or controlled to cancel the excitation force. When the structure does not vibrate, the amplitude of motion of the auxiliary mass equals the ratio of the amount of unbalance to the auxiliary mass. Therefore, the mass of the object is determined from the motion of the auxiliary mass. According to the measurement principles, the vibration of the supporting structure must be eliminated. A servocompensator with the performance of automatic frequency tracking is applied to reduce the vibration. Experimental results demonstrate that mass can be measured accurately with the developed measurement system.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献