Revisiting the Schrage Equation for Kinetically Limited Evaporation and Condensation

Author:

Vaartstra Geoffrey1,Lu Zhengmao2,Lienhard John H.1,Wang Evelyn N.1

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

2. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Abstract The Schrage equation is commonly used in thermofluid engineering to model high-rate liquid–vapor phase change of pure fluids. Although shortcomings of this simple model were pointed out decades ago and more rigorous models have emerged from the kinetic theory community, Schrage's equation continues to be widely used. In this paper, we quantify the accuracy of the Schrage equation for evaporation and condensation of monatomic and polyatomic fluids at the low to moderately high flux operating conditions relevant to thermofluid engineering applications. As a high-accuracy reference, we numerically solve a Bhatnagar, Gross, and Krook (BGK)-like a model equation for polyatomic vapors that have previously been shown to produce accurate solutions to the Boltzmann transport equation. We observe that the Schrage equation overpredicts heat/mass fluxes by ∼15% for fluids with accommodation coefficients close to unity. For fluids with smaller accommodation coefficients, such as water, the Schrage equation yields more accurate flux estimates. We find that the Mott-Smith-like moment methods developed for liquid–vapor phase change are much more accurate than the Schrage equation, achieving heat/mass flux estimates that deviate by less than 1% (evaporation) and 4% (condensation) from the reference solution. In light of these results, we recommend using the moment method equations instead of the Schrage equation. We also provide tables with our high-accuracy numerical data for evaporation of any fluid and condensation of saturated water vapor, engineering equations fit our data, and code for moment method calculations of evaporation and condensation.

Funder

Air Force Office of Scientific Research

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference73 articles.

1. Ueber Die Verdunstung Der Flüssigkeiten, Insbesondere Des Quecksilbers, Im Luftleeren Raume;Ann. Phys. Chem.,1882

2. Die Maximale Verdampfunggeschwindigkeit Des Quecksilbers;Ann. Phys. Chem.,1915

3. On Hydrodynamic Boundary Conditions With Evaporation of a Solid Absorbing Radiant Energy;Sov. Phys. JETP,1960

4. Kinetic Evaporation and Condensation Rates and Their Coefficients;J. Colloid Interface Sci.,1992

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3