Droplet Impacting on a Hydrophobic Surface: Influence of Surface Wetting State on Droplet Behavior

Author:

Abubakar Abba Abdulhamid1,Yilbas Bekir Sami2,Hassan Ghassan2,Al-Qahtani Hussain1,Ali Haider1,Al-Sharafi Abdullah3

Affiliation:

1. Department of Mechanical Engineering, KFUPM, Dhahran 31261, Saudi Arabia

2. Department of Mechanical Engineering, KFUPM Center of Research Excellence in Renewable Energy (CoRE-RE), K.A.CARE Energy Research and Innovation Center, DTV, Dhahran 31261, Saudi Arabia

3. Department of Mechanical Engineering, K.A.CARE Energy Research and Innovation Center, DTV, Dhahran 31261, Saudi Arabia

Abstract

Abstract Water droplet impacting onto a hydrophobic surface is considered and the influence of the surface wetting state on the droplet dynamics is examined. Pressure variation in the impacting droplet is predicted numerically using the level set model. The droplet spreading and the retraction on the hydrophobic surface are assessed for various wetting states of the hydrophobic surface. Experiment is carried out to validate the predictions of the droplet shape and the restitution coefficient. It is found that predictions of impacting droplet shape and the restitution coefficient agree with those obtained from the experiment. The local pressure peaks formed in the droplet fluid, particularly in the retraction period, causes alteration of the droplet vertical height and the shape. Droplet spreading is influenced by the wetting state of the hydrophobic surface; hence, increasing contact angle of the hydrophobic surface lowers the spreading diameter of the droplet on the surface. The transition time of the droplet changes with the wetting state of the hydrophobic surface such that increasing droplet contact angle reduces the transition time of the droplet on the surface. The droplet remains almost round after the first bounding for large contact angle hydrophobic surface.

Funder

King Fahd university of Petroleum and Minerals

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3