Manufacturing of Electrically Conductive Microstructures by Dropwise Printing and Laser Curing of Nanoparticle-Suspensions

Author:

Bieri N. R.1,Haferl S. E.1,Poulikakos D.1,Grigoropoulos C. P.2

Affiliation:

1. Swiss Federal Institute of Technology, Zurich, Switzerland

2. University of California at Berkeley, Berkeley, CA

Abstract

A novel method for the manufacturing of electric microconductors for semiconductor and other devices is presented. The method brings together three technologies: controlled (on demand) printing, laser curing, and the employment of nanoparticles of matter, possessing markedly different properties (here, melting point) than their bulk counterparts. A suspension of gold particles in toluene solvent is employed to print electrically conducting line patterns utilizing a modified on demand ink jet printing process. To this end, microdroplets of 80–100 μm diameters are deposited on a moving substrate such that the droplets form continuous lines. Focused laser irradiation is utilized in order to evaporate the solvent, melt the metal nanoparticles in the suspension, and sinter the suspended particles to form continuous, electrically conducting gold microlines on a substrate. The ultra fine particles in the suspension have a diameter size range of 2 – 5 nm. Due to curvature effects of such small particles, the melting point is markedly lower (400°C) than that of bulk gold (1063°C). Thermodynamic aspects of the effect of particle size on the melting and evaporation temperatures of gold and toluene, respectively, are discussed in the paper. The structure and line width of the cured line as a function of the laser irradiation power and stage velocity are reported in detail. Preliminary measurements of the electrical conductivity are represented.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the coalescence of gold nanoparticles;International Journal of Multiphase Flow;2004-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3