Finite Element Thermal Analysis for Microscale Laser Joining of Nanoscale Coatings of Titanium on Glass/Polyimide System

Author:

Mayeed Mohammed S.1,Lubna Nusrat J.1,Auner Gregory W.1,Newaz Golam M.1,Patwa Rahul2,Herfurth Hans2

Affiliation:

1. Wayne State University, Detroit, MI

2. Fraunhofer Center for Laser Technology, Plymouth, MI

Abstract

Finite element thermal analysis and comparison with experiments of microscale laser joining of biocompatible materials, polyimide (PI) and nanoscale coating of titanium (Ti) on glass (Gl), is vital for the long-term application of bio-implants and important for the applications of nanoscale solid coatings. In this study, a comprehensive three dimensional (3D) transient simulation for thermal analysis of transmission laser micro-joining of dissimilar materials has been performed by using the finite element (FE) code ABAQUS, along with a moving Gaussian laser heat source. The laser beam (wavelength of 1100 nm and diameter of 0.2 mm), moving at an optimized velocity (100 mm/min), passes through the transparent PI, gets absorbed by the absorbing Ti, and eventually melts the PI to form the bond. The laser bonded joint area is 6.5 mm long on three different Ti coating thicknesses of 400, 200 and 50 nms on Gl surface. Non-uniform mixed meshes have been used and optimized to formulate the 3D FE model and ensure very refined meshing around the bond area. During the microscale laser heating finite element modeling shows widths of PI surface experiencing temperatures above the glass transition temperature are similar to the widths of bonds observed in experiments for coating thicknesses of 400 and 200 nms of Ti on Gl. However, for the case of 50 nm coating bond width using finite element analysis cannot produce and is lower than the bond width observed experimentally.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and prediction of transmission laser bonding process between titanium coated glass and PET based on response surface methodology;Optics and Lasers in Engineering;2012-03

2. Finite element thermal/mechanical analysis for microscale laser joining of ultrathin coatings of titanium on glass/polyimide system;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2011-08-25

3. Analysis of Titanium-Coated Glass and Imidex (PI) Laser Bonded Samples;Journal of Materials Engineering and Performance;2011-03-26

4. Finite Element Thermal Analysis for Microscale Laser Joining of Glass/Silicon System;51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference<BR> 18th AIAA/ASME/AHS Adaptive Structures Conference<BR> 12th;2010-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3