Affiliation:
1. National Institute of Standards and Technology, Gaithersburg, MD
Abstract
The microassembly of microelectromechanical systems from various micro-components requires the development of many new robotic capabilities. One of these capabilities is force control for handling micro-scale components with force control resolution on the order of micronewtons. In this paper, the force control of linear motor stages is discussed with application to the microassembly of MEMS. Linear motor stages provide an attractive solution for microassembly robots because they have a large working volume and can achieve high-precision positioning. However, the nonlinear friction and force ripple effects inherent in linear stages provide an obstacle to the required level of force control. A model of a single motor stage has been developed including dynamic friction effects. Based on this model, a robust nonlinear force controller has been designed to meet the microassembly requirements. The controller has been tested in simulation to demonstrate its effectiveness.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献