An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management Based on Driving Pattern Recognition

Author:

Gu Bo1,Rizzoni Giorgio2

Affiliation:

1. Texas Instruments, Inc.

2. Ohio State University

Abstract

In this paper we present a novel adaptation method for the Adaptive Equivalent fuel Consumption Minimization Strategy (A-ECMS). The approach is based on Driving Pattern Recognition (DPR). The Equivalent (fuel) Consumption Minimization Strategy (ECMS) method provides real-time suboptimal energy management decisions by minimizing the "equivalent" fuel consumption of a hybrid-electric vehicle. The equivalent fuel consumption is a combination of the actual fuel consumption and electrical energy use, and an equivalence factor is used to convert electrical power used into an equivalent chemical fuel quantity. In this research, a driving pattern recognition method is used to obtain better estimation of the equivalence factor under different driving conditions. A time window of past driving conditions is analyzed periodically and recognized as one of the Representative Driving Patterns (RDPs). Periodically updating the control parameter according to the driving conditions yields more precise estimation of the equivalent fuel consumption cost, thus providing better fuel economy. Besides minimizing the instantaneous equivalent fuel consumption, the battery State of Charge (SOC) management is also maintained by using a PI controller to keep the SOC around a nominal value. The primary improvement of the proposed A-ECMS over other algorithms with similar objectives is that it does not require the knowledge of future driving cycles and has a low computational burden. Results obtained in this research show that the driving conditions can be successfully recognized and good performance can be achieved in various driving conditions while sustaining battery SOC within desired limits.

Publisher

ASMEDC

Reference12 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3