Affiliation:
1. University of Maryland, College Park, MD
Abstract
Graphite foams have recently been developed at ORNL and are beginning to be applied to thermal management of electronics. These foams consist of a network of interconnected graphite ligaments whose thermal conductivities are up to five times higher than copper. The thermal conductivity of the bulk graphite foam is similar to aluminum, but graphite foam has one-fifth the density of aluminum. This combination of high thermal conductivity and low density results in a thermal diffusivity about four times higher than that of aluminum, allowing heat to rapidly propagate into the foam. This heat is spread out over the very large surface area within the foam, enabling large amounts of energy to be transferred with relatively low temperature difference. The use of graphite foam as the evaporator of a thermosyphon is investigated due to its potential to transfer large amounts of energy without the need for external pumping. A preliminary optimization of the parameters governing evaporator performance is performed using 2-level factorial design. Performance of the system with both PF-5060 and PF-5050 were examined as well as the effects of liquid level and chamber pressure.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献