Dynamic Axial Crush of Automotive Rail-Sized Composite Tubes: Part 2 — Tubes With Braided Reinforcements (Carbon, Kevlar®, and Glass) and Non-Plug Crush Initiators

Author:

Browne Alan L.1,Zimmerman Kristin L.2

Affiliation:

1. General Motors R&D Center, Detroit, MI

2. General Motors Public Policy Center, Detroit, MI

Abstract

This paper documents the braided reinforcement portion of a successful fundamental study of the dynamic axial crush of automotive rail-sized composite tubes. Braided reinforcements were comprised principally of carbon fiber but also of Kevlar® and E-glass and combinations of the three. Fourteen different braids were used, six of which were tri-axial and the remainder bi-axial. Tubes were manufactured using Resin Transfer Molding (RTM) with processing and molding techniques that are suitable for the low cost high volume needs of the automotive industry. Braids were obtained as continuous rolls of tubular sock-like material and pulled over metal mandrels one ply at a time. Carbon fiber tow sizes ranged from 6k to 48k. Dow Derakane 470 vinylester resin was used for all tubes. Tube geometry, a 88.9×88.9 mm square cross section with 2.54 mm thick walls, approximated that of the first 500 mm of the lower rail of a typical mid-size vehicle. Note in particular that tube wall thickness was fixed at a single value in this study. A 45° bevel on the outside edge of the lead end of each tube served as the crush initiator. In total 71 dynamic axial crush tests were conducted. In terms of important findings, consistent with the woven fabric portion of this program [1], desirable dynamic axial crush response was demonstrated for RTM’d automotive rail-sized carbon fiber reinforced tubes. For almost all parameter configurations, the tubes exhibited stable and progressive crush with a reasonably flat plateau force level and an acceptable crush initiation force, i.e. one that can be withstood by the backup structure. Additionally, crush debris from such tubes was found to neither contain objectionable sharp brittle splinters nor pose a health risk. Displacement average values of dynamic axial crush force ranged from 11.88 to 26.51 kN and values of SEA (specific energy absorption) ranged between 10.42 and 22.44 kJ/kg. In terms of parameter effects, the fiber type and reinforcement architecture were found to be capable of more than doubling/halving the dynamic axial crush force and SEA.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3