Thermal and Mechanical Model for Rigid Cylinder Indenting an Elastic Layer Resting on Rigid Base: Application to Turned Surfaces

Author:

Zhang Zhe1,Marotta E. E.2,Ochterbeck J. M.1

Affiliation:

1. Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921

2. IBM Corporation, Server Group, Poughkeepsie, NY 12601-5400

Abstract

Models are presented for the solution of the thermal and mechanical problem of a rigid metallic cylinder indenting an elastic layer with finite thickness which rests on a rigid substrate without friction. The models were extended to turned surfaces applications. With introduction of an equivalent isothermal flux distribution for the mixed boundary problem—constant temperature over the contact area while adiabatic elsewhere along the top surface—an approximate analytical thermal model was developed. The solution was compared to a numerical solution under certain cases. Both solutions in turn compare very well with the generalized three-dimensional expression proposed by prior investigators. The mechanical model predicts the contact half-width under varying mechanical properties, layer dimensions, and applied load. The mechanical contact problem was solved numerically by substituting the displacement variable with a truncated polynomial to get a system of linear equations from which the dimensionless contact half-width was derived. The model is valid throughout a wide range of parameters, including mechanical properties and geometric dimensions. To explicitly predict the dimensionless contact half-width as a function of dimensionless load, a curve was fitted to the numerically obtained solution.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3