Heat Transfer From Novel Target Surface Structures to a Normally Impinging, Submerged and Confined Water Jet

Author:

Jeffers Nicholas M. R.1,Punch Jeff2,Walsh Edmond J.1,McLean Marc1

Affiliation:

1. Department of Mechanical and Aeronautical Engineering, Stokes Institute, University of Limerick, Limerick, Ireland

2. Department of Mechanical and Aeronautical Engineering, CTVR, Stokes Institute, University of Limerick, Limerick, Ireland

Abstract

Contemporary electronic systems generate high component-level heat fluxes. Impingement cooling is an effective way to induce high heat transfer coefficients in order to meet thermal constraints. The objective of this paper is to experimentally investigate the heat transfer from five novel target surface structures to a normally impinging, submerged, and confined water jet. The five target structures were: 90 deg vane, a 2×2 pin fin array, and three geometries, which turn the flow away from, and back towards, the surface to be cooled to create an annular jet. The experiments were conducted for inlet Reynolds numbers of 500≤Re≤22,000, based on the mean velocity and jet tube diameter. The confined impinging jet was geometrically constrained to a round 8.5 mm diameter, square edged nozzle at a jet exit-to-target surface spacing of H/D=0.5. The heat transfer characteristics of the five target surfaces were nondimensionally compared to a flat surface, and surface effectiveness of up to 2.2 was recorded. Enhancements of up to 45% were noted when the wetted surface area of the target surface structures was considered. The pressure drop attributed to the target surfaces is also considered. The findings of the paper are of practical relevance to the design of primary heat exchangers for high-flux thermal management applications, where the boundaries of cooling requirements continue to be tested.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference41 articles.

1. Liquid Cooling is Back;Schmidt;Electronic Cooling

2. Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces;Martin;Adv. Heat Transfer

3. A Review of Heat Transfer Data for Single Circular Jet Impingement;Jambunathan;Int. J. Heat Fluid Flow

4. Heat Transfer and Flow Fields in Confined Jet Impingement;Garimella;Annu. Rev. Heat Transfer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3