Damage Initiation and Propagation in Voided Joints: Modeling and Experiment

Author:

Ladani Leila Jannesari1,Dasgupta Abhijit2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT 84341

2. Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

Abstract

This study examines damage initiation and propagation in solder joints with voids, under thermomechanical cyclic loading. An accelerated thermal cycling test is conducted on printed wiring assemblies (PWAs) containing 256 input/output (I/O) plastic ball grid arrays (PBGAs) with voided solder joints. Destructive and nondestructive failure analyses of the solder balls are used to detect the presence of voids and to relate the extent of damage propagation to the number of thermal cycles. Particular cases of voided and damaged joints are selected from these tests, to guide the development of a strategy for modeling damage propagation, using a three dimensional global-local finite element analysis (FEA). The displacement results of the global FEA at the top and bottom of the selected solder balls are used as the boundary conditions in a local FEA model, which focuses on the details of damage initiation and propagation in the individual solder ball. The local model is error seeded with voids based on cases selected in experiment. The damage propagation rate is monitored for all the cases. The technique used to quantify cyclic creep-fatigue damage is a continuum model based on energy partitioning. A method of successive initiation is used to model the growth and propagation of damage in the selected case studies. The modeling approach is qualitatively verified using the results of the accelerated thermal cycling test. The verified modeling technique described above is then used for parametric study of the durability of voided solder balls in a ChipArray Thin Core BGA with 132 I/O (CTBGA132) assemblies, under thermal cycling. The critical solder ball in the package is selected and is error seeded with voids with different sizes and various distances from damage initiation site. The results show that voids in general are not detrimental to thermal cycling durability of the CTBGA132 assembly, except when a large portion of the damage propagation path is covered with voids. Small voids can arrest the damage propagation, but generally do not provide a significant increase in durability because the damage zone deflects around the void and also continues to propagate from other critical regions in the solder ball.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference43 articles.

1. Voids in Solder Joints;Aspandiar

2. Mechanical Degradation of Microelectronics Solder Joints Under Current Stressing;Ye;Int. J. Solids Struct.

3. A Thermodynamic Model for Electrical Current Induced Damage;Basaran;Int. J. Solids Struct.

4. Thermal Stress Analysis of SOIC Packages and Interconnections;Lau;IEEE Trans. Compon., Hybrids, Manuf. Technol.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3